Comparison of LFP-Based and Spike-Based Spectro-Temporal Receptive Fields and Cross-Correlation in Cat Primary Auditory Cortex
نویسندگان
چکیده
Multi-electrode array recordings of spike and local field potential (LFP) activity were made from primary auditory cortex of 12 normal hearing, ketamine-anesthetized cats. We evaluated 259 spectro-temporal receptive fields (STRFs) and 492 frequency-tuning curves (FTCs) based on LFPs and spikes simultaneously recorded on the same electrode. We compared their characteristic frequency (CF) gradients and their cross-correlation distances. The CF gradient for spike-based FTCs was about twice that for 2-40 Hz-filtered LFP-based FTCs, indicating greatly reduced frequency selectivity for LFPs. We also present comparisons for LFPs band-pass filtered between 4-8 Hz, 8-16 Hz and 16-40 Hz, with spike-based STRFs, on the basis of their marginal frequency distributions. We find on average a significantly larger correlation between the spike based marginal frequency distributions and those based on the 16-40 Hz filtered LFP, compared to those based on the 4-8 Hz, 8-16 Hz and 2-40 Hz filtered LFP. This suggests greater frequency specificity for the 16-40 Hz LFPs compared to those of lower frequency content. For spontaneous LFP and spike activity we evaluated 1373 pair correlations for pairs with >200 spikes in 900 s per electrode. Peak correlation-coefficient space constants were similar for the 2-40 Hz filtered LFP (5.5 mm) and the 16-40 Hz LFP (7.4 mm), whereas for spike-pair correlations it was about half that, at 3.2 mm. Comparing spike-pairs with 2-40 Hz (and 16-40 Hz) LFP-pair correlations showed that about 16% (9%) of the variance in the spike-pair correlations could be explained from LFP-pair correlations recorded on the same electrodes within the same electrode array. This larger correlation distance combined with the reduced CF gradient and much broader frequency selectivity suggests that LFPs are not a substitute for spike activity in primary auditory cortex.
منابع مشابه
Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain
This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...
متن کاملArtificial Spectro-Temporal Receptive Fields Evoked by Long Speech Signals
Neurons in the primary auditory cortex A1 unitize multidimensional receptive activation fields, which respond to specific frequency bands and timing patterns of the input signal. Such ‚spectro-temporal receptive fields’ (STRF) can experimentally be determined by reverse correlation methods if the activation or output signal patterns of the neurons are known. This seems impossible for neurons in...
متن کاملProperties of correlated neural activity clusters in cat auditory cortex resemble those of neural assemblies.
Spiking activity was recorded from cat auditory cortex using multi-electrode arrays. Cross-correlograms were calculated for spikes recorded on separate microelectrodes. The pair-wise cross-correlation matrix was constructed for the peak values of the correlograms. Hierarchical clustering was performed on the cross-correlation matrix for six stimulus conditions. These were silence, three multi-t...
متن کاملNew variations on the derivation of spectro-temporal receptive fields for primary auditory afferent axons.
The spectro-temporal receptive field [Hear. Res 5 (1981) 147; IEEE Trans BME 15 (1993) 177] provides an explicit image of the spectral and temporal aspects of the responsiveness of a primary auditory afferent axon. It exhibits the net effects of the competition between excitatory and inhibitory (or suppressive) phenomena. In this paper, we introduce a method for derivation of the spectro-tempor...
متن کاملCross-correlation and joint spectro-temporal receptive field properties in auditory cortex.
Recordings were made from the right primary auditory cortex in 17 adult cats using two eight-electrode arrays. We recorded the neural activity under spontaneous firing conditions and during random, multi-frequency stimulation, at 65 dB SPL, from the same units. Multiple single-unit (MSU) recordings (281) were stationary through 900 s of silence and during 900 s of stimulation. The cross-correlo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011